SAMPLE COLLECTION 8.4 The field team is responsible for determining what will comprise a representative sample with respect to study objectives and site characteristics. The bottom-material sample must resemble the native bottom material without loss of physical, chemical, and biological structure. The degree to which a single sample can be considered representative depends on many factors, including: - Temporal and spatial homogeneity of the water body. - Number and distribution of subareas sampled at a site. - Method (statistical or deterministic) used to select sampling sites and subareas. - Size of individual samples. - Technique used to collect samples and results from the quality-control sample analysis. Errors introduced by sampling can be the most significant in the entire data-collection process: always collect replicate samples for quality control. Generic USGS data-collection efforts typically take a whole-system approach, meaning that data are collected using methods to ensure that an entire stream reach is represented. Special studies may require an approach for which samples are representative of a specific, targeted environment or portion of an aqueous system, instead of the entire system. Criteria and considerations for collecting a representative sample are summarized in table 8-3. > CAUTION: Do not jeopardize personal safety when working from boats, planes, bridges; on ice; or in flowing water. + + ## 24—BOTTOM-MATERIAL SAMPLES Table 8–3. Criteria and considerations for collecting a representative sample of bottom material | Aspects of sample collection | Criteria and considerations | |------------------------------|--| | Equipment | Sampling equipment penetration must be deep enough to provide a sample that meets project objectives. Sampling equipment must be completely closed after proper penetration. Weight of sampler (too light could produce improper deployment of sampler). | | Techniques and methods | Bottom-material disturbance prior to equipment deployment must be avoided. Quantities of bottom material enclosed each time sampling equipment is deployed should be approximately equal. Speed of sampler through water column (too fast will produce too large a shock wave in front of descending sampler and greater potential for sampler malfunction, but too slow could produce insufficient penetration, especially with core samplers). | | Sampling
environment | Depth of water column (ensure adequate cable length to control speed of sampler deployment and personal safety when wading). Physical, chemical, and biological character of water column above sample-collection site (especially presence or absence of oxygen). Velocity of water currents (too fast could produce improper deployment of sampler). Sampling platform stability (such as boat, ice, float plane). | ## **8.4.1 SAMPLING PROCEDURES** Bottom-material samples must meet the sampling objective of the study. Use procedures that minimize sample disturbance and prevent contamination. Be aware that no procedure for collecting bottom-material samples can be used for every type of study objective and environmental setting. ## Complete the following steps before beginning to sample: - 1. Select sampling locations (refer to section 8.2 and table 8-4). - a. Examine each site to be sampled in a manner that minimizes the site's problematic characteristics and maximizes its beneficial characteristics. - For perennial flowing water, consider collecting bottommaterial samples after extended low-flow periods. - For ephemeral flowing water, consider collecting bottommaterial samples just after a runoff event. +